Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Lett ; 368(8)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33930123

RESUMO

Equol, which produced from daidzein (one of the principal isoflavones), is recognized to be the most resultful in stimulating an estrogenic and antioxidant response. The daidzein transformation was studied during fermentation of five growth media inoculated with feces from a healthy human, and a daidzein conversion strain was isolated. To enrich the bacterial population involved in daidzein metabolism in a complex mixture, fecal samples were treated with antibiotics. The improved propidium monoazide combined with the quantitative polymerase chain reaction (PMAxx-qPCR) assay showed that the ampicillin treatment of samples did result in a reduction of the total visible bacteria counts by 52.2% compared to the treatment without antibiotics. On this basis, the newly isolated rod-shaped, Gram-positive anaerobic bacterium, named strain Y11 (MN560033), was able to metabolize daidzein to equol under anaerobic conditions, with a conversion ratio (equol ratio: the amount of equol produced/amount of supplemented daizein) of 0.56 over 120 h. The 16S rRNA partial sequence of the strain Y11 exhibited 99.8% identity to that of Slackia equolifaciens strain DZE (NR116295). This study will provide new insights into the biotransformation of equol from daidzein by intestinal microbiota from the strain-level and explore the possibility of probiotic interventions.


Assuntos
Bactérias Anaeróbias/classificação , Equol/metabolismo , Bacilos Gram-Positivos/classificação , Isoflavonas/metabolismo , Bactérias Anaeróbias/isolamento & purificação , Bactérias Anaeróbias/metabolismo , Técnicas de Tipagem Bacteriana , Biotransformação , DNA Bacteriano/genética , Fezes/microbiologia , Bacilos Gram-Positivos/isolamento & purificação , Bacilos Gram-Positivos/metabolismo , Humanos , Intestinos/microbiologia , Testes de Sensibilidade Microbiana , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
2.
Front Microbiol ; 11: 1221, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582121

RESUMO

Human intestinal microbiota plays a crucial role in the conversion of isoflavones into equol. Usually, human microbiota-associated (HMA) animal models are used, since it is difficult to establish the mechanism and causal relationship between equol and microbiota in human studies. Currently, several groups have successfully established HMA animal models that produce equol through germ-free mice or rats; however, the HMA model of producing equol through pseudo germ-free mice has not been established. The objective of this study is to establish an HMA mice model for equol production through pseudo germ-free mice, mimicking the gut microbiota of an adult human equol producer. First, a higher female equol producer was screened as a donor from 15 volunteers. Then, mice were exposed to vancomycin, neomycin sulfate, metronidazole, and ampicillin for 3 weeks to obtain pseudo germ-free mice. Finally, pseudo germ-free mice were inoculated with fecal microbiota of the equol producer for 3 weeks to establish HMA mice of producing equol. The results showed that (i) the ability to produce equol was partially transferred from the donor to the HMA mice. (ii) Most of the original intestinal microbiota of mice were eliminated after broad-spectrum antibiotic administration. (iii) The taxonomy data from HMA mice revealed similar taxa to the donor sample, and the species richness returned to the level close to the donor. (iv) The family Coriobacteriaceae and genera Collinsella were successfully transferred from the donor to HMA mice. In conclusion, the HMA mice model for equol production, based on pseudo germ-free mice, can replace the model established by germ-free mice. The model also provides a basis for studying microbiota during the conversion from isoflavones into equol.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...